Organ-on-chip Market - Growth, Trends, COVID-19 Impact, and Forecasts (2021 - 2026)

The Organ-on-chip Market is segmented by Organ Type (Liver, Heart, Lung, and Other Organ Types), Application (Drug Discovery, Toxicology Research, and Other Applications), End User (Pharmaceutical and Biotechnology Companies, Academic and Research Institutes, and Other End Users), and Geography (North America, Europe, Asia-Pacific, Middle-East and Africa, and South America). The report offers the value (in USD million) for the above segments.

Market Snapshot

Study Period:


Base Year:


Fastest Growing Market:

North America

Largest Market:

North America


30 %

Need a report that reflects how COVID-19 has impacted this market and its growth?

Market Overview

The global organ-on-chip market was valued at an estimated USD 25 million in 2020, and it is expected to reach USD 115 million by 2026, registering a CAGR of 30% over the forecast period.

The research community and the biopharmaceutical industry have mobilized with unprecedented speed against the COVID-19 pandemic. Hence, organ-on-chip is founded to be one of the most promising and go-to technology during the development of vaccines and drugs that have been currently under clinical studies for the treatment of the infection. For instance, in March 2020, as a part of the World Health Organization’s (WHO) Research and Development Blueprint response to the COVID-19 outbreak, the emulate lung-chip was used to provide preclinical insights into the efficacy of hydroxychloroquine for COVID-19.

An organ-on-a-chip is a microfluidic cell culture device that contains continuously perfused chambers. This chip develops a narrow channel for the blood and airflow in organs, such as the lung, gut, liver, heart, and other organs. Such devices produce multiple levels of tissue and organ functionalities, which are not feasible using conventional 2D and 3D culture systems. It offers a wide range of applications, such as disease modeling, patient stratification, and phenotypic screening.

The organ-on-chip market is driven by factors, such as a requirement for alternatives for animal testing, the need for early detection of drug toxicity, and new product launches and advancements in technology that are also responsible for driving the market. For instance, in December 2020, CN Bio and the University of Melbourne collaborated to advance therapies through the lung-on-a-chip technology for respiratory complications among patients who have recovered from COVID-19.

In addition, in October 2020, BioVox raised awareness through an initiative to promote the organ-on-chip technology for improvisation in in vitro research models and for reducing animal testing.

The demand for personalized medication and the vast applications of organ-on-chip beyond the pharmaceutical industry are the major factors creating growth opportunities for market players. However, complexity of organ-on-chip models may hinder the market growth over forecast period.

Scope of the Report

An organ-on-chip is also called a multi-channel 3D microfluidic cell culture chip. It is a type of artificial organ that simulates activities, mechanics, and physiological responses of entire organs and organ systems. The size of the organ-on-chip is about an AA battery, and its transparency allows us to see the organ’s functionality, behavior, and response at the cellular and molecular levels. The organ-on-chip market is segmented by organ type (liver, heart, lung, and other organ types), application (drug discovery, toxicology research, and other applications), end user (pharmaceutical and biotechnology companies, academic and research institutes, and other end users), and geography (North America, Europe, Asia-Pacific, Middle-East and Africa, and South America). The report offers the value (in USD million) for the above segments.

Organ Type
Other Organ Types
Drug Discovery
Toxicology Research
Other Applications
End User
Pharmaceutical and Biotechnology Companies
Academic and Research Institutes
Other End Users
North America
United States
United Kingdom
Rest of Europe
South Korea
Rest of Asia-Pacific
Rest of the World

Report scope can be customized per your requirements. Click here.

Key Market Trends

Lung-related Application is Expected to Exhibit the Good Growth Rate Over the Forecast Period

The recent global COVID-19 pandemic caused by the novel coronavirus, SARS-CoV-2, necessitates rapid advances in research and development activities for different approaches to treating the infection. For instance, in April 2020, researchers at the Wyss Institute demonstrated that human airway organ chips can be used to model COVID-19 and the immune response toward the same, in order to test the effectiveness of drugs to curb the infection.

The development of new solutions to treat pulmonary diseases is currently of primary importance, as pulmonary diseases are found to be among the most dreadful conditions, globally.

According to the World Health Organization’s Global Tuberculosis Report 2020, there were an estimated 10.0 million new cases of TB disease (also known as active TB) in 2019. This is equivalent to 130 cases per 100,000 people, with an estimated 1.2 million deaths due to TB, globally.

The lung-on-chip technology is a complex, three-dimensional model of a living, breathing human lung on a microchip. This device, made up of human lung and blood vessel cells, can predict the absorption of airborne nanoparticles and mimic the inflammatory response triggered by microbial pathogens.

The device can also be used to test the effects of environmental toxins, absorption of aerosolized therapeutics, and the safety and efficacy of new drugs. It is expected to become an alternative to animal testing.

With the combination of the micro fabrication techniques, with modern tissue engineering, lung-on-chip also offers a new in vitro approach to drug screening by mimicking the complicated mechanical and biochemical behaviors of a human lung.

In October 2019, the Biomedical Advanced Research and Development Authority (BARDA), a part of the US Department of Health and Human Services (HHS), announced its plans to provide technical expertise and approximately USD 13.5 million over the next two years to the Wake Forest Institute for Regenerative Medicine (WFIRM) of Winston-Salem, North Carolina, to validate how the group’s lung-on-chip technology, also known as an organ tissue equivalent, works in modeling the effects of chlorine gas on human lungs.

Hence, despite having already proven its worth, the lung-on-chip technology may also need to be engineered further, perhaps with muscle cells, to help test the effects of any treatment on the lungs, which may result in further growth of the market.

To understand key trends, Download Sample Report

North America Captured the Largest Market Share and is Expected to Retain its Dominance Over the Forecast Period

The COVID-19 pandemic accelerated the use of organ-on-chip usage for the development and testing of drugs. The market has witnessed various collaborations between research institutes and market players. For instance, in October 2020, the United States Food and Drug Administration entered a collaborative agreement to use lung-chips from Emulate Inc. to evaluate the safety of COVID-19 vaccines and protective immunity against SARS-CoV-2.

Similarly, in October 2020, researchers at the US Army Combat Capabilities Development Command (CCDC) and Chemical Biological Center (CBC) used Emulat’s lung on chip technology for research on COVID-19.

Currently, North America dominates the organ-on-chip market, owing to factors, such as the availability of a wide range of services offered by major players (which includes customized designing of new chips with specific organ arrangements) and an increase in toxicological testing of chemicals on the different types of organ cells. Huge investments are being made by the public and private institutes for their research.

For instance, several research institutions are actively involving in research and further advancing the technologies for organ-on-chip in the North America. For instance, in March 2020, researchers at the Massachusetts Institute of Technology (MIT) created a new model for organs-on-a-chip that could be a crucial step in developing treatments for inflammatory diseases and afflictions.

In September 2019, Javelin Biotech and Pfizer entered a three-year development of a platform to evaluate absorption, distribution, metabolism, and excretion (ADME) properties of small molecules on an organ-on-a-chip platform. The platform will help inform human pharmacokinetic (PK) predictions, which are often crucial measurements evaluating new drug candidates in preclinical research. This further increased the growth in the market studied.

To understand geography trends, Download Sample Report.

Competitive Landscape

The organ-on-chip market is highly competitive and consists of several major players. In terms of market share, a few of the major players currently dominate the market. The presence of major market players, such as AxoSim Inc., BiomimX SRL, Elveflow, Emulate Inc., Hurel Corporation, InSphero AG, MIMETAS BV, Nortis Inc., Tara Biosystems Inc., and TissUse GmbH, is, in turn, increasing the overall competitive rivalry in the market. Product advancements and improvements in the organ-on-chip platforms by the major players are increasing the competitive rivalry.

Recent Developments

  • In 2020, CN Bio and Imperial College London collaborated to harness CN Bio’s liver-on-chip technology to advance the understanding of the underlying mechanisms of alcoholic hepatitis and uncover novel targets for drug discovery and development.
  • In 2020, InSphero AG and ETH Bio Engineering Laboratory announced the license agreement for InSphero’s Akura Flow organ-on-a-chip platform.

You can also purchase parts of this report. Do you want to check out a section wise price list?

Table Of Contents


    1. 1.1 Study Deliverables

    2. 1.2 Study Assumptions

    3. 1.3 Scope of the Study




    1. 4.1 Market Overview

    2. 4.2 Market Drivers

      1. 4.2.1 Requirement of Alternative for Animal Testing

      2. 4.2.2 Need for Early Detection of Drug Toxicity and New Products Launches

    3. 4.3 Market Restraints

      1. 4.3.1 Complexity of Organ-on-chip Models

    4. 4.4 Industry Attractiveness - Porter's Five Forces Analysis

      1. 4.4.1 Threat of New Entrants

      2. 4.4.2 Bargaining Power of Buyers/Consumers

      3. 4.4.3 Bargaining Power of Suppliers

      4. 4.4.4 Threat of Substitute Products

      5. 4.4.5 Intensity of Competitive Rivalry


    1. 5.1 Organ Type

      1. 5.1.1 Liver

      2. 5.1.2 Heart

      3. 5.1.3 Lung

      4. 5.1.4 Other Organ Types

    2. 5.2 Application

      1. 5.2.1 Drug Discovery

      2. 5.2.2 Toxicology Research

      3. 5.2.3 Other Applications

    3. 5.3 End User

      1. 5.3.1 Pharmaceutical and Biotechnology Companies

      2. 5.3.2 Academic and Research Institutes

      3. 5.3.3 Other End Users

    4. 5.4 Geography

      1. 5.4.1 North America

        1. United States

        2. Canada

      2. 5.4.2 Europe

        1. Germany

        2. United Kingdom

        3. France

        4. Italy

        5. Spain

        6. Rest of Europe

      3. 5.4.3 Asia-Pacific

        1. China

        2. Japan

        3. India

        4. Australia

        5. South Korea

        6. Rest of Asia-Pacific

      4. 5.4.4 Rest of the World


    1. 6.1 Company Profiles

      1. 6.1.1 Altis Biosystems

      2. 6.1.2 AxoSim Inc.

      3. 6.1.3 Bi/ond

      4. 6.1.4 BiomimX SRL

      5. 6.1.5 Elveflow

      6. 6.1.6 Emulate Inc.

      7. 6.1.7 Hesperos

      8. 6.1.8 Hurel Corporation

      9. 6.1.9 Allevi Inc.

      10. 6.1.10 InSphero AG

      11. 6.1.11 MIMETAS BV

      12. 6.1.12 Netri

      13. 6.1.13 Nortis Inc.

      14. 6.1.14 Tara Biosystems Inc.

      15. 6.1.15 TissUse GmbH

  7. *List Not Exhaustive

**Competitive Landscape Covers - Business Overview, Financials, Products and Strategies, and Recent Developments

80% of our clients seek made-to-order reports. How do you want us to tailor yours?

Related Reports