Waste-to-Energy Technologies Market - Growth, Trends, and Forecast (2020-2025)

The Waste-to-Energy Technologies Market is segmented by Technology (Municipal Solid Waste (MSW) Incineration, Co-Processing, Pyrolysis and Gasification, and Other Technologies ) and Geography (North America, Asia-Pacific, Europe, South America, and Middle East & Africa).

Market Snapshot

Study Period:

2020-2025

Base Year:

2019

Fastest Growing Market:

Europe

Largest Market:

Asia Pacific

CAGR:

5 %

Need a report that reflects how COVID-19 has impacted this market and its growth?

Market Overview

The waste-to-energy technologies market is expected to have substantial growth during the forecast period. With the increasing rate of waste generated per capita, pollution, and CO2 emissions, many countries around the world are giving emphasis on reducing carbon emission. Using non-renewable sources, such as municipal solid waste (MSW), to generate energy can help to stabilize the increasing carbon footprint. MSW is one of the waste forms that is mostly generated across the world, and nearly 2 billion tons of this waste is generated annually. Waste-to-energy technologies imply a set of technologies that treat MSW, to extract energy in the form of heat and electricity. Uses of the technologies also help to obtain biogas, as an alternate form of fuel. The factors driving the market include supportive government initiatives and efforts, to reduce dumps and open burning of waste in both developed and emerging economies across the world. However, the high capital and operation cost of waste-to-energy plants and the requirement of skilled staff to operate and to maintain the sophisticated technologies can act as a restraint to the market growth in the future.

  • Waste generation is overgrowing with an increase in population. It is expected to have around 3.4 billion tons of waste, by 2050. The direct relation between population and income level is expected to increase the waste volume. Moreover, daily per capita waste generation in the developed and emerging economies is expected to increase by 40%. Stabilization for future waste may increase the waste-to-energy technology in the future.
  • Municipal solid waste incineration (MSWI) is one of the major waste-to-energy technologies. In 2018, the technology nearly covered more than 40% of the total waste-to-energy installations around the world.
  • Europe is one of the prominent regions to have waste-to-energy technology. During 2018, waste-to-energy plants in Europe supplied nearly 18 million inhabitants with electricity and 15 million inhabitants with heat.

Scope of the Report

The wast- to-energy technologies market report include:

By Technology
Municipal Solid Waste (MSW) Incineration
Co-processing
Pyrolysis and Gasification
Other Technologies
By Geography
North America
Asia-Pacific
Europe
South America
Middle East & Africa

Report scope can be customized per your requirements. Click here.

Key Market Trends

Municipal Solid Waste Incineration (MSWI) as a Prominent Technology

  • During the MSWI process, waste materials are burned inside a specific chamber by raising the temperature to around 850-1450 degrees Celsius, and oxygen is added to have a combustion reaction. A minimum calorific value of the waste is required for self-combustion of the trash.
  • During the process, exhaust gases called flue gases are created, which is cleaned up before exiting from the facility. This flue gas contains the heat energy that is utilized to generate electricity or for heating purposes.
  • The operation of MSWI is more complex than the operation of a sanitary landfill. It requires well-developed technical and management skills, to set and adjust the parameter for the effective operation of the plant.
  • In 2018, more than 2,400 incineration plants were operated across the world. Annually, the plants treat nearly 360 million tons of waste, and it is estimated to have almost 70 new plants per year, until 2027.

To understand key trends, Download Sample Report

Europe as a Significant Market

  • Europe is one of the prominent regions to have developed its waste-to-energy technology. In 2018, the area had more than 500 plants, with most of the plants getting used for heating purposes.
  • Due to cold weather, Sweden and Denmark have several combined heat and power (CHP) waste-to-energy plants, like Aros, Vartan, Herning, etc., that generate more than 100-kilowatt electricity (kWe) of energy.
  • Europe is estimated to have nearly 330 waste-to-energy plants in the future, with a capacity of around 50 million metric tons annually. The addition of plants is expected to control the rising volume of waste in the region.
  • During 2019, the European Commission approved EUR 94 million for the construction and operation of a waste-to-energy co-generation plant in Bulgaria. The plant is expected to have a recycling capacity of nearly 180,000 metric tons of municipal waste, and it is expected to generate around 55 megawatt of heat and 19 megawatt of electricity.

To understand geography trends, Download Sample Report.

Competitive Landscape

The waste-to-energy technologies market is moderately fragmented. The key owners/operators in the market include Babcock & Wilcox Enterprises Inc., Ramboll Group AS, Veolia, Babcock & Wilcox Volund AS, Hitachi Zosen Inova AG, and Suez Environnement, among others.

You can also purchase parts of this report. Do you want to check out a section wise price list?

Table Of Contents

  1. 1. INTRODUCTION

    1. 1.1 Scope of the Study

    2. 1.2 Market Definition

    3. 1.3 Study Assumptions

  2. 2. EXECUTIVE SUMMARY

  3. 3. RESEARCH METHODOLOGY

  4. 4. MARKET OVERVIEW

    1. 4.1 Introduction

    2. 4.2 Existing Waste-to-Energy Technology

    3. 4.3 Waste-to-Energy Technology Market in USD billion (in 2025)

    4. 4.4 Recent Trends and Developments

    5. 4.5 Government Policies and Regulations

    6. 4.6 Market Dynamics

      1. 4.6.1 Drivers

      2. 4.6.2 Restraints

    7. 4.7 Supply Chain Analysis

    8. 4.8 Porter's Five Forces Analysis

      1. 4.8.1 Bargaining Power of Suppliers

      2. 4.8.2 Bargaining Power of Consumers

      3. 4.8.3 Threat of New Entrants

      4. 4.8.4 Threat of Substitute Products and Services

      5. 4.8.5 Intensity of Competitive Rivalry

  5. 5. MARKET SEGMENTATION

    1. 5.1 By Technology

      1. 5.1.1 Municipal Solid Waste (MSW) Incineration

      2. 5.1.2 Co-processing

      3. 5.1.3 Pyrolysis and Gasification

      4. 5.1.4 Other Technologies

      5. 5.1.5

    2. 5.2 By Geography

      1. 5.2.1 North America

      2. 5.2.2 Asia-Pacific

      3. 5.2.3 Europe

      4. 5.2.4 South America

      5. 5.2.5 Middle East & Africa

  6. 6. COMPETITIVE LANDSCAPE

    1. 6.1 Mergers and Acquisitions, Joint Ventures, Collaborations, and Agreements

    2. 6.2 Strategies Adopted by the Leading Players

    3. 6.3 Company Profiles

      1. 6.3.1 Babcock & Wilcox Enterprises Inc.

      2. 6.3.2 Ramboll Group AS

      3. 6.3.3 Veolia Group

      4. 6.3.4 Babcock & Wilcox Volund AS

      5. 6.3.5 Hitachi Zosen Inova AG

      6. 6.3.6 Suez Environnement

      7. 6.3.7 China Everbright International Limited

      8. 6.3.8 Covanta Holding Corporation

      9. 6.3.9 Amec Foster Wheeler PLC

      10. 6.3.10 Abu Dhabi National Energy Company PJSC (Taqa)

  7. *List Not Exhaustive
  8. 7. MARKET OPPORTUNITIES AND FUTURE TRENDS

** Subject to Availability

80% of our clients seek made-to-order reports. How do you want us to tailor yours?

Related Reports