Viral Vector Manufacturing Market Size & Share Analysis - Growth Trends & Forecasts (2023 - 2028)

The report covers Viral Vector Manufacturing Companies and it is segmented by Type (Adenoviral Vectors, Adeno-associated Viral Vectors, Lentiviral Vectors, Retroviral Vectors, and Other Types), Disease (Cancer, Genetic Disorders, Infectious Diseases, and Other Diseases), Application (Gene Therapy and Vaccinology), and Geography (North America, Europe, Asia-Pacific, Middle East & Africa, and South America). The market size and value (in USD million) for the above segments.

Viral Vector Manufacturing Market Size

Viral Vector Manufacturing Market Summary
share button
Study Period 2019-2027
Market Size (2023) USD 0.98 Billion
Market Size (2028) USD 3.29 Billion
CAGR (2023 - 2028) 27.36 %
Fastest Growing Market Asia-Pacific
Largest Market North America

Major Players

Viral Vector Manufacturing Market Major Players

*Disclaimer: Major Players sorted in no particular order

setting-icon

Need a report that reflects how COVID-19 has impacted this market and its growth?

Viral Vector Manufacturing Market Analysis

The Global Viral Vector Manufacturing Market size is expected to grow from USD 0.98 billion in 2023 to USD 3.29 billion by 2028, at a CAGR of 27.36% during the forecast period (2023-2028).

The COVID-19 pandemic had underlined the importance of vaccine development for the global population, and it has had a positive impact on the growth of the viral vector manufacturing market. According to the WHO Global COVID-19 Vaccination - Strategic Vision for 2022, there are at least 17 vaccines in use. As of November 8, 2022, 12.88 billion doses were administered, and another 400 and more vaccine candidates were in clinical and preclinical development. Two viral vector vaccines have been authorized for emergency use in many countries for COVID-19, as of January 7, 2022, according to the Viral Vector Vaccines segment published by the Infectious Diseases Society of America. Moreover, various companies are launching their products and are involved in various partnerships, collaborations, and other developments which are expected to positively impact the market. For instance, in April 2020, AstraZeneca and Oxford University announced their partnership to develop a viral vectored vaccine utilizing a modified replication-deficient chimp adenovirus vector, ChAdOx1. Also, Janssen Biotech (Johnson & Johnson) has developed a viral vector vaccine utilizing a replication-incompetent human adenovirus vector and received approval from US FDA in February 2021, importance of viral vector manufacturing is increasing owing to the increasing research and developments occurring in current times.

The market is driven by the increasing prevalence of genetic disorders, cancer, and infectious diseases, the increasing number of clinical studies and availability of funding for gene therapy development, and potential applications in novel drug delivery approaches. For instance, as per the report published by the Foundation for Food & Agriculture Research in April 2022, African Swine Fever (ASF) has emerged as one of the highly contagious viruses that cause 100% mortality in swine. As of now, there is no commercially available vaccine to treat the disease. Therefore, to combat the disease, the Foundation for Food & Agricultural Research granted USD 145,000 to Genvax Technologies for developing a self-amplifying messenger RNA (saRNA) vaccine for African Swine Fever in association with the United States Department of Agriculture-Agricultural Research Services-Plum Island Animal Disease Center (USDA-ARS-PIADC). This prevalence of numerous infectious and viral diseases is motivating major companies to focus on viral vector product development and manufacturing.

Additionally, as the recombinant viral vectors are highly effective carriers of sequences encoding virus-disabling sequences, the appropriate and exact viral vectors usually need to be selected and adapted for application in the treatment of specific viral infections. Currently, there have been significant public and private sector initiatives are being taken for the development of viral vector vaccines, leading the key players to invest in capacity expansion for manufacturing activities. For example, in Augut 2022, Thermo Fisher opened a new manufacturing facility for viral vector production in Plainville, Massachusetts. The 300,000 square-foot-plant is opened with an aim to manufacture viral vectors, which are critical components in the development of gene therapies. Therefore, these related development activities by major players are also expected to boost the market's growth.

Government initiatives such as direct funding towards viral vector manufacture, which is increasing awareness, while the regulatory environment is getting streamlined via changes, such as prompt approval processes, are driving the studied market's growth. These aforementioned factors can propel the market for viral vector manufacturing and are expected to grow in the future. However, the high cost of gene therapies and challenges in viral vector manufacturing capacity can impact market growth negatively.

Viral Vector Manufacturing Market Trends

This section covers the major market trends shaping the Viral Vector Manufacturing Market according to our research experts:

Cancer Sub-segment is Expected to Grow Faster in the Disease Segment

The upsurge in the global incidence of cancer and modern healthcare facilities are acting as major drivers for the growth of the market studied. According to GLOBOCAN 2020, globally, there were 1,92,92,789 new cancer cases in 2020, and it is projected to increase to 2,88,87,940 cases by 2040. In 2022, there are numerous Phase I, Phase II, Phase III, and Phase IV clinical trials related to viral vectors for the treatment of various types of cancers such as brain, skin, liver, colon, breast, and kidney. These trials are being conducted in various academic centers and biotechnology companies. For instance, as of November 17, 2022, more than 663 ongoing interventional clinical trials related to gene therapy across different phases of development for cancer were there globally, as mentioned in the National Clinical Trial (NCT) Registry.

In the field of oncology, viral vector-based gene therapy has demonstrated steady progress. A variety of viral vectors have been engineered for both therapeutic and preventive applications in cancers. Many gene therapy strategies have been developed to treat a wide range of cancers, including suicide gene therapy, oncolytic virotherapy, anti-angiogenesis, and therapeutic gene vaccines. According to the study published in the Radiology and Oncology in March 2022, numerous opportunities exist for using viral vectors in cancer therapy. Due to their improved ability to transduce human cells, viral vectors are a desirable drug delivery option. Over a thousand clinical trials using viral vectors are being conducted worldwide to treat cancer in 2021. For instance, as per clinicaltrial.gov as of November 17, 2022, there are around 86 trials being active using viral vectors for the treatment of cancer. Thus, owing to the increase in global cancer incidence, the market is expected to see growth.

The increasing research and development activities for the development of viral vector vaccines or therapies are increasing the opportunity for novel product developments. For instance, in September 2021, building on the success of the Oxford-AstraZeneca vaccine against SARS-CoV-2, researchers from the University of Oxford and the Ludwig Institute for Cancer Research are creating a vaccine to treat cancer. a viral vector cancer vaccine reduces tumor size and improves survival rates in mouse models by generating efficient anti-tumor immune responses when combined with immunotherapy. it is expected that a first-in-human clinical trial of the therapeutic cancer vaccine will begin in patients with non-small cell lung cancer in the coming year. Thus, growing research and development activity on the viral vector bases cancer manufacturing vaccines

The surge in demand for the development of effective therapeutics for cancer management, the presence of a prompt approval process, and the prospects of novel drugs for significant product developments are the primary reasons responsible for significant research and development investments in the field of cancer therapeutics that are based on viral vectors. This, in turn, affects the growth of the cancer segment positively, and the cancer segment is hence expected to boost the market's growth.

Viral Vector Manufacturing Market  :  Estimated Number of New Cancer Cases (in thousands), by Type, United States, 2022

North America is Expected to Witness Considerable Growth Over the Forecast Period

North America currently dominates the market for viral vector manufacturing and is expected to continue its stronghold for a few more years. In the United States, regulatory encouragement and patient advocacy have pushed rare disease clinical research to center stage. The significant incentives on offer through the Orphan Drugs Act (the United States) have encouraged pharmaceutical and biotechnology companies to consider the development of rare disease medicines as a potentially profitable venture.

Many companies have been expanding their facilities and investing a significant amount of capital in the region. For example, in October 2022, Kite, a Gilead Company announced the U.S. FDA has approved the company's retroviral vector (RVV) manufacturing facility in Oceanside, California, for commercial production of viral vetors. These developments could have a positive effect on the market growth as more research on viral vectors is anticipated. In October 2021, Catalent has invested USD 230 million to increase the production of viral vectors at its gene therapy campus in Harmans, Maryland.

The United States holds the largest market share in the North American region owing to various factors like the high adoption rate of new therapies, increasing investments by key players, and the high incidence rate of cancer. For instance, in January 2021, Fujifilm Corporation is planning to invest USD 40.0 million to establish a new processing facility to advance viral vector manufacturing and perform cutting-edge research in the field of advanced therapies in the greater-Boston area. The investment will be dedicated to Fujifilm Diosynth Biotechnologies, a contract development and manufacturing organization (CDMO) for biologics, viral vaccines, and viral vectors. Thus such favorable initiatives may surge the market growth in the United States over the forecast period.

Viral Vector Manufacturing Market- Growth Rate by Region

Viral Vector Manufacturing Industry Overview

The viral vector manufacturing market is moderately competitive and has several key players. Owing to the growing demand for novel therapeutics to deal with life-threatening diseases, such as cancer, various smaller companies are also entering the market and holding a significant market share. Some of the key market players are Cognate BioServices Inc. (Cobra Biologics), Finvector, Fujifilm Holdings, Corporation (Fujifilm Diosynth Biotechnologies), Kaneka Corporation (Eurogentec), Merck KGaA, Uniqure NV, Oxford BioMedica PLC, Johnson & Johnson (Janssen Global Services LLC), AstraZeneca, Vibalogics, Danaher (Cytiva), Sanofi SA, F. Hoffmann-La Roche Ltd (Spark Therapeutics), Lonza, and Thermo Fisher Scientific Inc.

Viral Vector Manufacturing Market Leaders

  1. FUJIFILM Diosynth Biotechnologies U.S.A. Inc.

  2. Thermo Fisher Scientific

  3. Cognate Bioservices

  4. Merck KgaA

  5. FinVector

*Disclaimer: Major Players sorted in no particular order

Viral Vector Manufacturing Market Concentration

Viral Vector Manufacturing Market News

  • In June 2022, Avid Bioservices, Inc. opened the analytical and process development (AD/PD) suites within the company's new, world-class viral vector development and Current Good manufacturing Plant (CGMP) manufacturing facility. Build-out of the viral vector facility's CGMP manufacturing suites is ongoing, with those capabilities expected to come online in mid-calendar 2023.
  • In May 2022, AGC Biologics announced that it is adding viral vector suspension technology and capacity for the development and manufacturing of gene therapies at its commercial-grade campus in Longmont, Colo.

Viral Vector Manufacturing Market Report - Table of Contents

  1. 1. INTRODUCTION

    1. 1.1 Study Assumptions and Market Definition

    2. 1.2 Scope of the Study

  2. 2. RESEARCH METHODOLOGY

  3. 3. EXECUTIVE SUMMARY

  4. 4. MARKET DYNAMICS

    1. 4.1 Market Overview

    2. 4.2 Market Drivers

      1. 4.2.1 Rising Prevalence of Genetic Disorders, Cancer, and Infectious Diseases

      2. 4.2.2 Increasing Number of Clinical Studies and Availability of Funding for Gene Therapy Development

      3. 4.2.3 Potential Applications in Novel Drug Delivery Approaches

    3. 4.3 Market Restraints

      1. 4.3.1 High Cost of Gene Therapies

      2. 4.3.2 Challenges in Viral Vector Manufacturing Capacity

    4. 4.4 Porter's Five Forces Analysis

      1. 4.4.1 Threat of New Entrants

      2. 4.4.2 Bargaining Power of Buyers/Consumers

      3. 4.4.3 Bargaining Power of Suppliers

      4. 4.4.4 Threat of Substitute Products

      5. 4.4.5 Intensity of Competitive Rivalry

  5. 5. MARKET SEGMENTATION (Market Size by Value - USD million)

    1. 5.1 By Type

      1. 5.1.1 Adenoviral Vectors

      2. 5.1.2 Adeno-associated Viral Vectors

      3. 5.1.3 Lentiviral Vectors

      4. 5.1.4 Retroviral Vectors

      5. 5.1.5 Other Types

    2. 5.2 By Disease

      1. 5.2.1 Cancer

      2. 5.2.2 Genetic Disorders

      3. 5.2.3 Infectious Diseases

      4. 5.2.4 Other Diseases

    3. 5.3 By Application

      1. 5.3.1 Gene Therapy

      2. 5.3.2 Vaccinology

    4. 5.4 Geography

      1. 5.4.1 North America

        1. 5.4.1.1 United States

        2. 5.4.1.2 Canada

        3. 5.4.1.3 Mexico

      2. 5.4.2 Europe

        1. 5.4.2.1 Germany

        2. 5.4.2.2 United Kingdom

        3. 5.4.2.3 France

        4. 5.4.2.4 Italy

        5. 5.4.2.5 Spain

        6. 5.4.2.6 Rest of Europe

      3. 5.4.3 Asia-Pacific

        1. 5.4.3.1 China

        2. 5.4.3.2 Japan

        3. 5.4.3.3 India

        4. 5.4.3.4 Australia

        5. 5.4.3.5 South Korea

        6. 5.4.3.6 Rest of Asia-Pacific

      4. 5.4.4 Middle East & Africa

        1. 5.4.4.1 GCC

        2. 5.4.4.2 South Africa

        3. 5.4.4.3 Rest of Middle East & Africa

      5. 5.4.5 South America

        1. 5.4.5.1 Brazil

        2. 5.4.5.2 Argentina

        3. 5.4.5.3 Rest of South America

  6. 6. COMPETITIVE LANDSCAPE

    1. 6.1 Company Profiles

      1. 6.1.1 Charles River Laboratories (Cobra Biologics)

      2. 6.1.2 Finvector

      3. 6.1.3 Fujifilm Holdings Corporation (Fujifilm Diosynth Biotechnologies)

      4. 6.1.4 Kaneka Eurogentec SA

      5. 6.1.5 Merck KGaA

      6. 6.1.6 uniQure NV

      7. 6.1.7 Oxford Biomedica PLC

      8. 6.1.8 Johnson & Johnson (Janssen Global Services LLC)

      9. 6.1.9 AstraZeneca

      10. 6.1.10 Vibalogics

      11. 6.1.11 Danaher (Cytiva)

      12. 6.1.12 Sanofi

      13. 6.1.13 F. Hoffmann-La Roche Ltd (Spark Therapeutics)

      14. 6.1.14 Lonza

      15. 6.1.15 Thermo Fisher Scientific Inc.

    2. *List Not Exhaustive
  7. 7. MARKET OPPORTUNITIES AND FUTURE TRENDS

**Competitive Landscape Covers- Business Overview, Financials, Products and Strategies, and Recent Developments

Viral Vector Manufacturing Industry Segmentation

As per the scope of this report, viral vectors represent one of the primary tools that can be used to deliver genetic material into cells. The viral vector manufacturing market is segmented by Type (Adenoviral Vectors, Adeno-associated Viral Vectors, Lentiviral Vectors, Retroviral Vectors, and Other Types), Disease (Cancer, Genetic Disorders, Infectious Diseases, and Other Diseases), Application (Gene Therapy and Vaccinology), and Geography (North America, Europe, Asia-Pacific, Middle East & Africa, and South America). The market report also covers the estimated market sizes and trends for 17 different countries across major regions, globally. The report offers the value (in USD million) for the above segments.

By Type
Adenoviral Vectors
Adeno-associated Viral Vectors
Lentiviral Vectors
Retroviral Vectors
Other Types
By Disease
Cancer
Genetic Disorders
Infectious Diseases
Other Diseases
By Application
Gene Therapy
Vaccinology
Geography
North America
United States
Canada
Mexico
Europe
Germany
United Kingdom
France
Italy
Spain
Rest of Europe
Asia-Pacific
China
Japan
India
Australia
South Korea
Rest of Asia-Pacific
Middle East & Africa
GCC
South Africa
Rest of Middle East & Africa
South America
Brazil
Argentina
Rest of South America

Report scope can be customized per your requirements. Click here.

You can also purchase parts of this report. Do you want to check out a section wise price list?

Viral Vector Manufacturing Market Research FAQs

The Global Viral Vector Manufacturing Market size is expected to reach USD 980.35 million in 2023 and grow at a CAGR of 27.36% to reach USD 3,285.10 million by 2028.

In 2023, the Global Viral Vector Manufacturing Market size is expected to reach USD 980.35 million.

FUJIFILM Diosynth Biotechnologies U.S.A. Inc., Thermo Fisher Scientific, Cognate Bioservices, Merck KgaA and FinVector are the major companies operating in the Global Viral Vector Manufacturing Market.

Asia-Pacific is estimated to grow at the highest CAGR over the forecast period (2023-2027).

In 2023, the North America accounts for the largest market share in the Global Viral Vector Manufacturing Market.

Viral Vector Manufacturing Industry Report

Statistics for the 2023 Viral Vector Manufacturing market share, size and revenue growth rate, created by Mordor Intelligence™ Industry Reports. Viral Vector Manufacturing analysis includes a market forecast outlook to 2028 and historical overview. Get a sample of this industry analysis as a free report PDF download.

close-icon
80% of our clients seek made-to-order reports. How do you want us to tailor yours?

Please enter a valid email id!

Please enter a valid message!