Polyvinylidene Fluoride (PVDF) Market - Growth, Trends, COVID-19 Impact, and Forecasts (2022 - 2027)

The Polyvinylidene Fluoride (PVDF) Market is segmented by Application (Pipes and Fittings, Films and Sheets, Wires and Semiconductor Processing, Coatings, Membranes, and Li-ion Batteries), End-user Industry (Oil and Gas, Electrical and Electronics, Chemical Processing, Automotive and Transportation, Aerospace and Defense, Building and Construction, and Other End-user Industries), and Geography (Asia-Pacific, North America, Europe, South America, and Middle East & Africa). The report offers market size and forecasts for PVDF in volume (tons) for all the above segments.

INSTANT ACCESS

Market Snapshot

Polyvinylidene Fluoride (PVDF) Market Size
Study Period: 2017-2027
Base Year: 2021
Fastest Growing Market: Asia Pacific
Largest Market: Asia Pacific
CAGR: >21 %
Polyvinylidene Fluoride (PVDF) Market Major Players

Need a report that reflects how COVID-19 has impacted this market and its growth?

Market Overview

The polyvinylidene fluoride (PVDF) market was valued at 51,419.35 tons in 2021, and it is expected to register a CAGR of ~21.23% during the forecast period (2022-2027).

The COVID-19 pandemic in 2020 did leave a negative impact on the market for a short while. However, the industry has recovered since then. Steady growth in electronics, automotive, aerospace, oil and gas, and chemical processing industries has positively impacted the market since then, thereby driving the market studied.

  • The factors driving the growth of the market studied are the desirable properties of PVDF compared to other fluoropolymers, increasing demand for PVDF-based materials from the electrical and electronics sector, and increasing demand for PVDF resins as a binder in lithium-ion battery manufacturing.
  • Technological advancements in various applications of PVDF is expected to provide growth opportunity in the future.
  • Asia-Pacific dominated the global market, with the majority of the consumption coming from China, ASEAN Countries, and Japan.

Scope of the Report

Polyvinylidene Fluoride (PVDF) is a specialty polymer with pyroelectric and piezoelectric properties and is used in the manufacturing of diverse high-purity, high-strength, and high-chemical-resistance products for applications in electrical, electronic, biomedical, construction, fluid-systems, oil-and-gas, and food industries. The polyvinylidene fluoride (PVDF) market is segmented by application, end-user industry, and geography. By Application, the market is segmented into Pipes and Fittings, Films and Sheets, Wires and Semiconductor Processing, Coatings, Membranes, and Li-ion Batteries. By end-user industry, the market is segmented into Oil and Gas, Electrical and Electronics, Chemical Processing, Automotive and Transportation, Aerospace and Defense, Building and Construction, and Other End-user Industries. The report also covers the market size and forecasts for the PVDF market in 16 countries across major regions. For each segment, the market sizing and forecasts have been done on the basis of volume (tons).

Application
Pipes and Fittings
Films and Sheets
Wires and Semiconductor Processing
Coatings
Membranes
Li-ion Batteries
End- user Industry
Oil and Gas
Electrical and Electronics
Chemical Processing
Automotive and Processing
Aerospace and Defense
Building and Construction
Other End-user Industries
Geography
Asia-Pacific
China
India
Japan
South Korea
ASEAN Countries
Rest of Asia-Pacific
North America
United States
Canada
Mexico
Europe
Germany
United Kingdom
France
Italy
Spain
Rest of Europe
South America
Brazil
Argentina
Rest of South America
Middle East & Africa
Saudi Arabia
South Africa
Rest of Middle East & Africa

Report scope can be customized per your requirements. Click here.

Key Market Trends

Li-ion Batteries Segment Dominated the Market

  • One of the important areas in which PVDF is used in lithium-ion batteries is binders. In lithium-ion batteries, the binder can be considered a key component. The major function of the binders in lithium-ion batteries is to act as an effective dispersion agent to connect the electrode species together and then steadily adhere them to the current collectors.
  • PVDF is one of the most common binders used for the cathode of lithium-ion batteries because of its superior electrochemical and thermal stability and good adhesion between the current collectors and electrode films.
  • By the adhesion between the current collectors and electrode films obtained by PVDF Binder for Li-ion Battery Electrodes, the longer cycle life and higher energy density can be obtained at even lower PVDF binder addition. Also, the polar functional groups in the PVDF binder result in lower internal energy.
  • Additionally, long‐term stability can be ensured by the PVDF's excellent chemical resistance in the aggressive environment of lithium-ion batteries, which includes organic carbonates and lithium salts.
  • Lithium-ion batteries are used in various applications, such as power backup/UPS, mobiles, laptops, and other commonly used consumer electronic goods, as they can last way longer between charges while maintaining a high current output. This makes it the perfect battery for most modern needs. As people spend more time on mobile phones and laptops, lithium-ion batteries can make sure that they are on-the-go and spend minimal time attached to a charging cord.​​
  • Lithium-ion batteries can also be characterized as energy storage systems that rely on insertion reactions. Energy storage systems, usually batteries, are essential for all types of electric vehicles, including hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (EVs).​ These batteries also have a high power-to-weight ratio, high energy efficiency, good high-temperature performance, and low self-discharge, due to which their applications in electric vehicles have been rapidly increasing.​
  • It is projected that between 2020 and 2030, the global demand for lithium-ion batteries will increase elevenfold, reaching over two terawatt-hours in 2030. Much of this growth can be attributed to the rising popularity of electric vehicles, which predominantly rely on lithium-ion batteries for power.
  • According to Statista Research Department, the global lithium-ion battery market is expected to significantly grow as well. While valued at about USD 40.5 billion in 2020, the market should reach the size of around USD 91.9 billion in 2030. Lithium-ion battery production capacity worldwide is thus projected to significantly increase, reaching over two terawatt-hours in 2028. Thus, the demand for PVDF from battery manufacturing is expected to grow simultaneously.
  • Such developments are expected to drive the market through the forecast period.
Polyvinylidene Fluoride (PVDF) Market Share

Asia-Pacific Region to Dominate the Market

  • The Asia-Pacific region was largely dominated by China. The end-user industries involving the usage of PVDF in China include oil and gas, electrical and electronics, chemical processing, automotive, aerospace and defense, and building and construction industries.
  • China is the largest base for electronics production in the world. Electronic products, such as smartphones, TVs, and other personal electronic devices, recorded the highest growth in the electronics segment. The country serves the domestic demand for electronics and exports electronic output to other countries. ​
  • Semiconductors form a major part of the electronics segment, which involves the usage of PVDF. The semiconductor sales value in China stood at USD 15.66 billion in the month of June 2021, while in May 2021, it stood at USD 15.51 billion. China is also home to 73% of lithium cell manufacturing capacity.
  • Further, Kureha, a company in the PVDF market, is expanding with a production ramp-up in China. The ongoing capacity expansion at the Iwaki Factory, which is scheduled to complete in January 2022, is intended to support the growing growth demand for PVDF binders. Kureha aims to further strengthen its PVDF production capability in stages and in alignment with market growth to pursue business expansion.
  • The chemical industry in China is a major source of employment and revenue generation. Many manufacturing industries utilize PVDF in pipes and fittings to protect the fluids flowing in them. Thus, the chemical processing industry is a major factor influencing the PVDF market in the country.
  • Additionally, China controls 80% of the world's lithium refining and 77% of the world's cell capacity, dominating the lithium-ion battery production in the global market.
  • All such developments in the country are expected to drive the market for PVDF in China in the years to come.
Polyvinylidene Fluoride (PVDF) Market Analysis

Competitive Landscape

The polyvinylidene fluoride (PVDF) market is highly consolidated, and the top four players accounted for a share of around 90% in 2021. The top players include Arkema Group, Solvay, Kureha Corporation, and Dyneon LLC (3M Company).

Recent Developments

  • In November 2021, Arkema announced a 50% increase in its Kynar PVDF fluoropolymer production capacities at its Pierre-Bénite site in order to address the fast-growing demand for materials for lithium-ion batteries. It aims to achieve EUR 1 billion in sales in the battery sector by 2032.
  • In June 2021, Arkema launched its new sustainable Kynar PVDF range. These new grades will be 100% renewable attributed carbon derived from crude tall oil biofeedstock.
  • In May 2021, the capability to blend high-performance PVDF with various types of rubber has been achieved jointly by Arkema, King of Prussia, Penn, and Canada's Polymer Engineering Company (PEC), which offers specialized expertise in the field of polymer technology, including plastic and rubber materials, coatings, paints, adhesives, and other unique polymeric applications.
  • In January 2021, with the planned acquisition of Agiplast, a leader in the regeneration of high-performance polymers, particularly specialty polyamides and fluoropolymers, Arkema contributes to the sustainable development of the polymer industry in line with Arkema's sustainable growth strategy.

Table of Contents

  1. 1. INTRODUCTION

    1. 1.1 Study Assumptions

    2. 1.2 Scope of the Study

  2. 2. RESEARCH METHODOLOGY

  3. 3. EXECUTIVE SUMMARY

  4. 4. MARKET DYNAMICS

    1. 4.1 Drivers

      1. 4.1.1 Increasing Demand for Lithium-ion Batteries

      2. 4.1.2 Growing Demand from Electrical and Electronics Industry

      3. 4.1.3 More Desirable Properties in Comparison to Other Fluoropolymers

    2. 4.2 Restraints

    3. 4.3 Industry Value Chain Analysis

    4. 4.4 Porter's Five Forces Analysis

      1. 4.4.1 Bargaining Power of Suppliers

      2. 4.4.2 Bargaining Power of Buyers

      3. 4.4.3 Threat of New Entrants

      4. 4.4.4 Threat of Substitute Products and Services

      5. 4.4.5 Degree of Competition

    5. 4.5 Production Process Analysis

  5. 5. MARKET SEGMENTATION

    1. 5.1 Application

      1. 5.1.1 Pipes and Fittings

      2. 5.1.2 Films and Sheets

      3. 5.1.3 Wires and Semiconductor Processing

      4. 5.1.4 Coatings

      5. 5.1.5 Membranes

      6. 5.1.6 Li-ion Batteries

    2. 5.2 End- user Industry

      1. 5.2.1 Oil and Gas

      2. 5.2.2 Electrical and Electronics

      3. 5.2.3 Chemical Processing

      4. 5.2.4 Automotive and Processing

      5. 5.2.5 Aerospace and Defense

      6. 5.2.6 Building and Construction

      7. 5.2.7 Other End-user Industries

    3. 5.3 Geography

      1. 5.3.1 Asia-Pacific

        1. 5.3.1.1 China

        2. 5.3.1.2 India

        3. 5.3.1.3 Japan

        4. 5.3.1.4 South Korea

        5. 5.3.1.5 ASEAN Countries

        6. 5.3.1.6 Rest of Asia-Pacific

      2. 5.3.2 North America

        1. 5.3.2.1 United States

        2. 5.3.2.2 Canada

        3. 5.3.2.3 Mexico

      3. 5.3.3 Europe

        1. 5.3.3.1 Germany

        2. 5.3.3.2 United Kingdom

        3. 5.3.3.3 France

        4. 5.3.3.4 Italy

        5. 5.3.3.5 Spain

        6. 5.3.3.6 Rest of Europe

      4. 5.3.4 South America

        1. 5.3.4.1 Brazil

        2. 5.3.4.2 Argentina

        3. 5.3.4.3 Rest of South America

      5. 5.3.5 Middle East & Africa

        1. 5.3.5.1 Saudi Arabia

        2. 5.3.5.2 South Africa

        3. 5.3.5.3 Rest of Middle East & Africa

  6. 6. COMPETITIVE LANDSCAPE

    1. 6.1 Mergers and Acquisitions, Joint Ventures, Collaborations, and Agreements

    2. 6.2 Market Share (%) Analysis**/Ranking Analysis

    3. 6.3 Strategies Adopted by Leading Players

    4. 6.4 Company Profiles

      1. 6.4.1 Arkema

      2. 6.4.2 Daikin Industries Ltd

      3. 6.4.3 Dongyue Group

      4. 6.4.4 Dyneon LLC (3M)

      5. 6.4.5 Gujarat Fluorochemicals Limited

      6. 6.4.6 Kureha Corporation

      7. 6.4.7 RTP Company

      8. 6.4.8 Shanghai Huayi 3F New Materials Co. Ltd

      9. 6.4.9 Shanghai Ofluorine Co. Ltd

      10. 6.4.10 Solvay

    5. *List Not Exhaustive
  7. 7. MARKET OPPORTUNITIES AND FUTURE TRENDS

    1. 7.1 Technological Advancements in the Applications of PVDF

**Subject to Availability

You can also purchase parts of this report. Do you want to check out a section wise price list?

Frequently Asked Questions

The Polyvinylidene Fluoride (PVDF) Market market is studied from 2017 - 2027.

The Polyvinylidene Fluoride (PVDF) Market is growing at a CAGR of >21% over the next 5 years.

Asia Pacific is growing at the highest CAGR over 2021- 2026.

Asia Pacific holds highest share in 2021.

Arkema Group, 3M, Kureha Corporation, Solvay, Dongyue Group are the major companies operating in Polyvinylidene Fluoride (PVDF) Market.

80% of our clients seek made-to-order reports. How do you want us to tailor yours?

Please enter a valid email id!

Please enter a valid message!