Laboratory Robotic Arm Market Size & Share Analysis - Growth Trends & Forecasts (2025 - 2030)

The Report Covers Robotic Arm in Laboratory Companies and the Market is Segmented by Type (Articulated Arm, Dual Arm Parallel Link Arm), by Application (Drug Discovery, Digital Imaging, Genomics and Proteomics, Clinical Diagnostics, System Biology), by Geography (North America, Europe, Asia Pacific, Rest of the World). The Report Offers Market Forecasts and Size in Value (USD) for all the Above Segments.

Laboratory Robotic Arm Market Size & Share Analysis - Growth Trends & Forecasts (2025 - 2030)

Laboratory Robotic Arm Market Size

Robotic Arms In Laboratories Market Summary
Study Period 2019 - 2030
Base Year For Estimation 2024
Forecast Data Period 2025 - 2030
CAGR 11.50 %
Fastest Growing Market Asia Pacific
Largest Market North America
Market Concentration Medium

Major Players

Robotic Arms In Laboratories Market Major Players

*Disclaimer: Major Players sorted in no particular order

Compare market size and growth of Robotic Arms In Laboratories Market with other markets in Technology, Media and Telecom Industry

Automation

Digital Commerce

Electronics

Information Technology

Media and Entertainment

Security & Surveillance

Laboratory Robotic Arm Market Analysis

The Robotic Arms In Laboratories Market is expected to register a CAGR of 11.5% during the forecast period.

Robotic arms are rapidly being used in research laboratories for applications that need flexibility, effective space use, and seamless integration of lab peripherals. With the simplicity with which the arms may be programmed, the adoption has expanded over time. Preparing samples, running analytical equipment, and handling sample material are typical duties these robots do. As a result, lab automation is the primary driver of laboratory robotic arm use.

  • Robotic arms are widely used in assay development, cell biology, bioassay validation, DNA quantification, PCR setup, and cleanup. These are optimized for handling standard labware, like microplates, reservoirs, and disposable tip racks. These are also helpful for loading and unloading microplate-based lab instruments, such as readers, washers, and reagent dispensers. 
  • Further, biomedical research has employed robotic arms primarily to process samples. Their influence in the drug discovery process remained limited, which explains why the development, testing, and commercialization process takes 15 to 20 years on average. Recent improvements in laboratory automation and robotics, particularly in AI and ML, have created a new frontier in life science and pharmaceutical. Tasks can now be completed at rates and precision that exceed human competence.
  • For instance, the FDA's Center for Drug Evaluation and Research (CDER) recently approved 50 brand-new pharmaceutical and biological products. 33 of the 50 novel medications and biological products approved for usage had tiny molecules, while 17 were monoclonal antibodies and other large molecules. However, the number of biological approvals has constantly risen during the past few years. Such huge approvals for drugs will drive the studied market.
  • Furthermore, due to its apparent benefits, including stability, high precision, repeatability, many degrees of freedom, mobility, and remote control, collaborative robotic arms have been used with medical imaging and operations for a while. In many surgical procedures, robotic surgery is now a reality. According to National Health Service (United Kingdom), 43.3 million imaging tests were reported between April 2021 and March 2022 in England. 3.67 million imaging tests were said to have been performed in March 2022. The most prevalent type of imaging in March 2022 was plain radiography (X-rays), with 1.82 million cases, followed by diagnostic ultrasound (0.85 million), computerized axial tomography (CT-scan), and magnetic resonance imaging (0.56 million).
  • Moreover, more tests are being sent to the lab due to a higher number of patients and an increasing number of tests available. However, the need for more staff to process these samples leaves medical facilities needing help. According to the Bureau of Labor Statistics, the demand for lab workers is growing. For instance, the American Association of Medical Colleges (AAMC) predicted that by 2030 there would be a shortage of 42,600 and 121,300 clinicians by the end of the following decade. This would drive the demand for the studied market.
  • Furthermore, the Russia-Ukraine war is impacting the supply chain of electronic components. The dispute has disrupted the supply chain, causing shortages and price increases for raw materials, affecting robotic arms manufacturers and potentially leading to higher costs for end-users.

Laboratory Robotic Arm Industry Overview

The Robotic Arms in Laboratories is semi-consolidated with the presence of major players like Thermo Fisher Scientific Inc., Hamilton Company, Hudson Robotics, Inc., Tecan Group, and Anton Paar GmbH. Players in the market are adopting strategies such as partnerships and acquisitions to enhance their product offerings and gain sustainable competitive advantage.

  • January 2024: SRI's XRGo robotic platform is set to revolutionize the pharmaceutical industry by ensuring cleanrooms remain sterile and safeguarding workers during maintenance on high-volume production lines and in other hazardous environments. With its intuitive telemanipulation software, operators can exert fine control over a robotic arm, facilitating remote interventions without disturbing the environment. 
  • December 2023: ABB Robotics and XtalPi have established a strategic partnership to develop a series of automated laboratory workstations in China. These cutting-edge laboratories will significantly enhance the productivity of R&D processes in biopharmaceuticals, chemical engineering, chemistry, and new energy materials.

Laboratory Robotic Arm Market Leaders

  1. Thermo Fisher Scientific Inc.

  2. Hamilton Company

  3. Hudson Robotics, Inc.

  4. Tecan Group

  5. Anton Paar GmbH

  6. *Disclaimer: Major Players sorted in no particular order
Robotic Arms In Laboratories Market Concentration
Need More Details on Market Players and Competiters?
Download PDF

Laboratory Robotic Arm Market News

  • August 2024: Mitsubishi Electric unveiled its latest series of industrial robots, enhancing its already extensive lineup. These robots, known for their speed and precision, are tailored to meet the evolving demands of modern manufacturing. The newly introduced RV-35/50/80FR series has an expanded work envelope, offering increased payload and reach capabilities than its predecessors. 
  • January 2024: GITAI USA Inc., a firmspace robotics startup, is set to dispatch its 1.5-meter-long autonomous dual robotic arm system, dubbed S2, to the International Space Station (ISS). After successfully passing stringent NASA safety evaluations, the S2 is slated for external installation on the ISS's Nanoracks Bishop Airlock. Throughout its mission, the robotic arm is poised to perform a range of on-orbit services, demonstrating its proficiency in maintenance, inspection, and life-extension tasks for satellites.

Laboratory Robotic Arm Market Report - Table of Contents

1. INTRODUCTION

  • 1.1 Study Assumptions and Market Definition
  • 1.2 Scope of the Study

2. RESEARCH METHODOLOGY

3. EXECUTIVE SUMMARY

4. MARKET INSIGHTS

  • 4.1 Market Overview
  • 4.2 Value Chain Analysis
  • 4.3 Industry Attractiveness - Porter's Five Forces Analysis
    • 4.3.1 Threat of New Entrants
    • 4.3.2 Bargaining Power of Buyers
    • 4.3.3 Bargaining Power of Suppliers
    • 4.3.4 Threat of Substitute Products
    • 4.3.5 Intensity of Competitive Rivalry
  • 4.4 Assessment of Impact of Macroeconomic Trends on the Market

5. MARKET DYNAMICS

  • 5.1 Market Drivers
    • 5.1.1 Growing Trend of Lab automation
    • 5.1.2 Increasing Focus Towards Work-safety in Laboratories
  • 5.2 Market Restraints
    • 5.2.1 Expensive Initial Setup

6. MARKET SEGMENTATION

  • 6.1 By Type
    • 6.1.1 Articulated Arm
    • 6.1.2 Dual Arm
    • 6.1.3 Parallel Link Arm
    • 6.1.4 Others
  • 6.2 By Application
    • 6.2.1 Drug Discovery
    • 6.2.2 Digital Imaging
    • 6.2.3 Genomics & Proteomics
    • 6.2.4 Clinical Diagnostics,
    • 6.2.5 System Biology
    • 6.2.6 Others
  • 6.3 By Geography***
    • 6.3.1 North America
    • 6.3.2 Europe
    • 6.3.3 Asia
    • 6.3.4 Australia and New Zealand
    • 6.3.5 Latin America
    • 6.3.6 Middle East and Africa

7. COMPETITIVE LANDSCAPE

  • 7.1 Company Profiles*
    • 7.1.1 Thermo Fisher Scientific Inc.
    • 7.1.2 Hamilton Company
    • 7.1.3 Hudson Robotics, Inc.
    • 7.1.4 Tecan Group
    • 7.1.5 Anton Paar GmbH
    • 7.1.6 Biomrieux SA
    • 7.1.7 Siemens Healthineers AG
    • 7.1.8 Beckman Coulter Inc.
    • 7.1.9 Perkinelmer Inc.
    • 7.1.10 QIAGEN NV
    • 7.1.11 Abbott Laboratories

8. INVESTMENT ANALYSIS

9. FUTURE OF THE MARKET

**Subject to Availability
*** In the Final Report Asia, Australia and New Zealand will be Studied Together as 'Asia Pacific'
You Can Purchase Parts Of This Report. Check Out Prices For Specific Sections
Get Price Break-up Now

Laboratory Robotic Arm Industry Segmentation

A robotic arm is a mechanical, programmable device that manipulates objects like a human arm. Various medical institutions apply robotic arms to drive innovations in the healthcare industry. Robotic arms can prepare blood tests and medications in labs, assist in physical therapy, etc.

The robotic arms in laboratories market is segmented by Type (articulated arm, dual arm, parallel link arm), application (drug discovery, digital imaging, genomics & proteomics, clinical diagnostics, system biology), and geography (North America, Europe, Asia Pacific, Rest of the World). The report offers market forecasts and size in value (USD) for all the above segments.

By Type Articulated Arm
Dual Arm
Parallel Link Arm
Others
By Application Drug Discovery
Digital Imaging
Genomics & Proteomics
Clinical Diagnostics,
System Biology
Others
By Geography*** North America
Europe
Asia
Australia and New Zealand
Latin America
Middle East and Africa
Need A Different Region or Segment?
Customize Now

Laboratory Robotic Arm Market Research FAQs

What is the current Robotic Arms in Laboratories Market size?

The Robotic Arms in Laboratories Market is projected to register a CAGR of 11.5% during the forecast period (2025-2030)

Who are the key players in Robotic Arms in Laboratories Market?

Thermo Fisher Scientific Inc., Hamilton Company, Hudson Robotics, Inc., Tecan Group and Anton Paar GmbH are the major companies operating in the Robotic Arms in Laboratories Market.

Which is the fastest growing region in Robotic Arms in Laboratories Market?

Asia Pacific is estimated to grow at the highest CAGR over the forecast period (2025-2030).

Which region has the biggest share in Robotic Arms in Laboratories Market?

In 2025, the North America accounts for the largest market share in Robotic Arms in Laboratories Market.

What years does this Robotic Arms in Laboratories Market cover?

The report covers the Robotic Arms in Laboratories Market historical market size for years: 2019, 2020, 2021, 2022, 2023 and 2024. The report also forecasts the Robotic Arms in Laboratories Market size for years: 2025, 2026, 2027, 2028, 2029 and 2030.

Laboratory Robotic Arm Industry Report

Statistics for the 2025 Robotic Arms In Laboratories market share, size and revenue growth rate, created by Mordor Intelligence™ Industry Reports. Robotic Arms In Laboratories analysis includes a market forecast outlook for 2025 to 2030 and historical overview. Get a sample of this industry analysis as a free report PDF download.