Field Programmable Gate Array (FPGA) Market - Growth, Trends, and Forecast (2019 - 2024)

The Field Programmable Gate Array (FPGA) Market is segmented by Configuration (High-End FPGA, Mid-Range FPGA, Low-End FPGA), Architecture (SRAM Based FPGA, Anti-Fuse Based FPGA, Flash Based FPGA), End-user Industry (Telecommunication, Consumer Electronics, Automotive, Industrial, Military & Aerospace, Healthcare), and Geography.

Market Snapshot

Study Period:


Base Year:


Fastest Growing Market:

Asia Pacific

Largest Market:

Asia Pacific



Key Players:

80% of our clients seek made-to-order reports. How do you want us to tailor yours?

Market Overview

The global field programmable gate array (FPGA) market is expected to witness a CAGR of 8.64% during the forecast period (2019-2024).Owing to rising applications across various sectors, such as aerospace and defense, automotive, consumer electronics, high-performance computing, and data storage, video and image processing, wired and wireless communications, FPGA technology is witnessing rapid growth in its adoption.

  • Field Programmable Gate Arrays (FPGAs) are pre-fabricated silicon devices that can be electrically programmed in the field to become almost any kind of digital circuit or system. They are an array of configurable logic blocks (CLBs) connected via programmable interconnects and can be reprogrammed to the desired application or functionality requirements after manufacturing.
  • The current FPGAs are often ideal replacements for end-of-life FPGAs, Application Specific Standard Product (ASSPs) and Complex Programmable Logic Device (CPLDs), like PCI controllers and physical-layer interfaces. A single-chip FPGA solution on the printed-circuit board is attractive, as it eliminates the need for an additional configuration device.
  • Consumer electronics need more computing power, and the flexibility in hardware for product differentiation and new-standards adaptability are driving the huge demand for FPGA.
  • FPGA chip adoption across all industries is driven by the fact that they combine the best parts of application-specific integrated circuits (ASICs) and processor-based systems. Also, for low-to-medium volume productions, FPGAs provide the cheaper solution and faster time to market, as compared to Application-specific Integrated Circuits (ASIC), which normally require a lot of resources in terms of time and money, to obtain the first device.

Scope of the Report

Field Programmable Gate Arrays (FPGAs) are pre-fabricated silicon devices that can be electrically programmed in the field to become almost any kind of digital circuit or system. They are an array of configurable logic blocks (CLBs) connected via programmable interconnects and can be reprogrammed to desired application or functionality requirements after manufacturing

By Configuration
High-end FPGA
Mid-range FPGA
Low-end FPGA
By Architecture
Anti-fuse Based FPGA
Flash-based FPGA
By End-user Industry
Consumer Electronics
Military & Aerospace
Other End-user Industries
North America
United States
United Kingdom
Rest of Europe
South Korea
Rest of Asia-Pacific
Latin America
Rest of Latin America
Middle East & Africa
Saudi Arabia
South Africa
Rest of Middle East & Africa

Report scope can be customized per your requirements. Click here.

Key Market Trends

SRAM-based FPGAs to Account for a Significant Share

  • SRAM-based FPGAs are configured with data logical cells in static memory because SRAM is volatile without a power source. There are basic modes for programming, like Master mode (FPGAs study configured data from external flash memory chip) and Slave mode (FPGAs are configured by a master processor, which is dedicated via interfaces for scanning data).
  • The popularity of SRAM programming technology is derived from the simplicity of its manufacturing process. The technology, which is two process generations ahead of other FPGAs, results in process advantage that provides higher performance, greater logic density, and improved power efficiency.
  • The rise in applications of SRAM FPGAs in harsh radiation environments has increased recently. Programmable devices require reduction techniques for ensuring targeting memory, with user logic and embedded RAM blocks. The storage of SRAM help in configuring data with internal volatile memory cells, with distribution being done throughout the device.
  • However, volatility is the major drawback of SRAM based FPGA because in the absence of power availability the entire programming will be lost. Overcoming these volatilities require external storage with the application, where there is more power availability, as this helps in taking inputs from external storage devices.

To understand key trends, Download Sample Report

China to Drive the Market in Asia-Pacific

  • China is the major player in consumer electronics sector. With the increasing sales of these devices, specifically the smartphones, incorporation of FPGA in them is expected to increase over the forecast period. The smartphones sales value in China rose from USD 90.1 billion in 2013 to USD 152.3 billion in 2017.
  • In addition to this, Chinese companies are investing in developing Artificial intelligence (AI) technology. The AI chip developers in China, including Hisilicon Semiconductor, Cambricon, DeePhi Tech, Horizon Robotics, and Bitmain have been aggressively planning new business strategies to compete against global first-tier chip vendors, leveraging assistance from the Chinese government.
  • The Chinese government has recently announced a three-year plan to promote AI technology and industry development from 2018-2020, targeting eight major applications, including smart cars and service robots with several types of chips, including ASIC, GPU, FPGA, and CPU being used in them.
  • Moreover, the Chinese start up company DeePhi Tech, with the support of technical expertise of the market leader Xilinx Inc., had developed AI chips using highly efficient FPGA-accelerated speech recognition engine, achieving 43 times the original performance compared to a CPU.

To understand geography trends, Download Sample Report

Competitive Landscape

The nature of competition within the industry can be studied in two different segments. Mainly due to economies of scale and nature of the product offering, the market space remains highly contested and the cost-volume metrics favor companies that operate with low-fixed costs Some key players in the Market are Xilinx, Achronix Semiconductor Corp, Altera Corporation, E2V Technologies among others. Some key recent developments in the market include: 

  • March 2019 - Xilinx, Inc. announced next FPGA for space applications 20nm Kintex Ultrascale XQRKU060 which will empower future-ultrahigh throughput applications which will also have the same die as its current commercial equivalent. 

Major Players

  1. Xilinx, Inc.
  2. Intel Corporation (Altera)
  3. Texas Instruments Inc.
  4. Microsemi Corporation( Microchip Technology)
  5. Atmel Corporation

* Complete list of players covered available in the table of contents below


Table of Contents


    1. 1.1 Study Deliverables

    2. 1.2 Study Assumptions

    3. 1.3 Scope of the Study




    1. 4.1 Market Overview

    2. 4.2 Introduction to Market Drivers and Restraints

    3. 4.3 Market Drivers

      1. 4.3.1 Non-recurring Engineering Cost is Low Per Design

      2. 4.3.2 Rising Cost of ASIC Design

    4. 4.4 Market Restraints

      1. 4.4.1 High Cost of Implementation and Maintenance

    5. 4.5 Value Chain / Supply Chain Analysis

    6. 4.6 Industry Attractiveness - Porter's Five Force Analysis

      1. 4.6.1 Threat of New Entrants

      2. 4.6.2 Bargaining Power of Buyers/Consumers

      3. 4.6.3 Bargaining Power of Suppliers

      4. 4.6.4 Threat of Substitute Products

      5. 4.6.5 Intensity of Competitive Rivalry


    1. 5.1 By Configuration

      1. 5.1.1 High-end FPGA

      2. 5.1.2 Mid-range FPGA

      3. 5.1.3 Low-end FPGA

    2. 5.2 By Architecture

      1. 5.2.1 SRAM-based FPGA

      2. 5.2.2 Anti-fuse Based FPGA

      3. 5.2.3 Flash-based FPGA

    3. 5.3 By End-user Industry

      1. 5.3.1 Telecommunication

      2. 5.3.2 Consumer Electronics

      3. 5.3.3 Automotive

      4. 5.3.4 Industrial

      5. 5.3.5 Military & Aerospace

      6. 5.3.6 Healthcare

      7. 5.3.7 Other End-user Industries

    4. 5.4 Geography

      1. 5.4.1 North America

        1. United States

        2. Canada

      2. 5.4.2 Europe

        1. Germany

        2. United Kingdom

        3. France

        4. Rest of Europe

      3. 5.4.3 Asia-Pacific

        1. China

        2. Japan

        3. India

        4. South Korea

        5. Rest of Asia-Pacific

      4. 5.4.4 Latin America

        1. Brazil

        2. Argentina

        3. Mexico

        4. Rest of Latin America

      5. 5.4.5 Middle East & Africa

        1. UAE

        2. Saudi Arabia

        3. South Africa

        4. Rest of Middle East & Africa


    1. 6.1 Company Profiles

      1. 6.1.1 Achronix Semiconductor Corporation

      2. 6.1.2 Intel Corporation (Altera)

      3. 6.1.3 E2V Technologies( Teledyne Technologies International Corp)

      4. 6.1.4 Atmel Corporation(Microchip Technology)

      5. 6.1.5 Lattice Semiconductor Corporation

      6. 6.1.6 Microsemi Corporation(Microchip Technology)

      7. 6.1.7 Tabula Inc.

      8. 6.1.8 Xilinx Inc.

      9. 6.1.9 Texas Instruments Inc.

      10. 6.1.10 QuickLogic Corporation

      11. 6.1.11 Cypress Semiconductor

    2. *List Not Exhaustive


80% of our clients seek made-to-order reports. How do you want us to tailor yours?

Please Enter a Valid Message!

Complete your payment details below

Shipping & Billing Information

Payment Information